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This paper tackles the problem of synthesizing specifications for nondeterministic programs. For such programs,
useful specifications can capture demonic properties, which hold for every nondeterministic execution, but also
angelic properties, which hold for some nondeterministic execution. We build on top of a recently proposed
spYRO framework in which given (i) a quantifier-free query ¥ posed about a set of function definitions (i.e.,
the behavior for which we want to generate a specification), and (ii) a language £ in which each extracted
property is to be expressed (we call properties in the language L-properties), the goal is to synthesize a
conjunction A; ¢; of L-properties such that each of the ¢; is a strongest L-consequence for ¥: ¢; is an over-
approximation of ¥ and there is no other L-property that over-approximates ¥ and is strictly more precise
than ¢;. This framework does not apply to nondeterministic programs for two reasons: it does not support
existential quantifiers in queries (which are necessary to expressing nondeterminism) and it can only compute
L-consequences, i.e., it is unsuitable for capturing both angelic and demonic properties.

This paper addresses these two limitations and presents a framework, LouD, for synthesizing both strongest
L-consequences and weakest L-implicants (i.e., under-approximations of the query ¥) for queries that can
involve existential quantifiers. We devise algorithms for handling the quantifiers appearing in LouD queries and
implement them in a solver, AsPIRE, for problems expressed in LouD which can be used to describe and identify
sources of bugs in both deterministic and nondeterministic programs, extract properties from concurrent
programs, and synthesize winning strategies in two-player games.
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1 Introduction

Specifications allow us to understand what programs do, but are often hard to write and maintain.
Writing specifications is especially hard for programs involving nondeterminism, a construct
necessary to model many practical applications such as concurrency, random execution, and games.
Part of what makes writing such specifications hard is that specifications for programs involving
nondeterminism might capture two types of properties: demonic properties, which hold for every
nondeterministic execution, and angelic properties, which hold for some nondeterministic execution.

Consider a program that nondeterministically shuffles the elements of a list. A possible valid
demonic property could state that the output list is always a permutation of the input list. However,
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de Vries and Koutavas [10] argued that this specification alone is “incomplete”; a sorting function
would also meet this specification, even though it would not behave correctly as a shuffle function.
A better specification would include an angelic property that states that the shuffle function can
in fact produce all permutations of the input list—i.e., for any permutation of the input list, there
exists some nondeterministic execution that can generate it.

The goal of this paper is to devise a unified logical framework for synthesizing provably sound
angelic and demonic specifications for nondeterministic programs. Most approaches that automati-
cally generate specifications from code [2, 16, 17, 42] rely on a finite set of dynamically generated
input executions and cannot guarantee soundness even when the programs are deterministic. To
our knowledge, spYro [34] is the only framework for synthesizing specifications that are provably
sound, but it is fundamentally limited to deterministic programs. In this paper, we redesign the
spPYRO framework to support nondeterminism, and both angelic and demonic reasoning.

Limitations of spYro. In spYRo, the problem of synthesizing a specification is phrased as follows:
Given (i) a quantifier-free query ¥ posed about a set of function definitions, and (ii) a domain-specific
language £ in which each extracted property is to be expressed (we call properties in the language
L-properties), the goal is to synthesize a conjunction /; ¢; of logically incomparable L-properties
such that each ¢; is an over-approximation of ¥ and is a strongest in £—i.e., there is no other
L-property that over-approximates ¥ and that strictly implies ¢;. For example, for a query ¥ :=
(lour = reverse(l;,)) describing a list-reverse function, and a language L of arithmetic formulas
over variables and their lengths, the property ¢ := len(l,,:) < len(li,) is an L-consequence of ¥,
but not a strongest one, because ¢; := len(l,,;) = len(l;,) is a stronger L-consequence of V.

Because the query ¥ and DSL £ can be provided by a user, the spYrRo framework can be applied
to many domains. By setting £ to capture the syntax of restricted refinement types, spYro has been
used for extracting refinement types from data-structure transformations [37], whereas by setting
L to capture algebraic specification, spYRO could synthesize interfaces for software modules [35].

SPYRO is very expressive, but it does not support nondeterministic programs for two reasons. First,
SPYRO’s synthesis algorithms are fundamentally limited to quantifier-free queries. Without existen-
tial quantifiers, SPYRO’s queries cannot model nondeterministic programs, concurrent programs, or
uncertainty. Second, sPYRo is limited to synthesizing over-approximations of the program behavior.
While over-approximations can capture what must happen for every (nondeterministic) execu-
tion (the demonic properties), reasoning about the actual behaviors that some (nondeterministic)
execution can exhibit (the angelic properties) requires under-approximated specifications.

The Loup Framework. This paper addresses the two limitations of spYrRo and presents LouUD, a
general framework for solving the following problem:

Given an existentially quantified query ¥ posed about a set of function definitions and a
language £, find (i) a strongest conjunction of £-consequences that is implied by ¥, and (ii) a
weakest disjunction of L-implicants that implies V.

The rouDp framework is our key contribution. While LouDp superficially looks like a small modifi-
cation of SPYRO [34], the minimal extension of including existential quantifications in queries allows
LOUD to elegantly capture many new complex scenarios into a single unified logical framework.
Specifically, existentially quantified queries allow LOUD to reason about both angelic and demonic
properties of programs involving nondeterminism. For example, consider the dining-philosophers
problem where n philosophers are arranged in a circle, each concurrently (and nondeterministically)
acquiring and releasing contended resources placed on either of their sides. We can model what
combinations of actions and scheduling lead to a deadlock using an existentially quantified query
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such as 3s. dl = philo(s, p1,. .., pn), where p; € {L, R} indicates which resource the philosopher p;
tries to take first and dI denotes that a deadlock has happened; s is the nondeterministic sequence
of order in which threads are scheduled (detailed description in Section 7.3).

Supporting both over- and under-approximate reasoning (i.e., computing both £-consequences
and L-implicants) enables new applications. Let’s say we are interested in understanding what
philosophers’ actions may lead to a deadlock for some possible schedule. When given an ap-
propriate language L, a possible under-approximation (i.e., L-implicant) of the query 3s.dl =
philo(s, p1,...,pn) isdl A py = -+ = p,, which states that deadlock can happen when all the
philosophers prefer the same direction. On the other hand, if we instead are interested in what
philosophers’ choices must prevent deadlocks for any possible schedule, we can resort to over-
approximation. A possible over-approximation (i.e. £-consequence) in the Loup framework is
p1 # p2, = —dl, which states that deadlock will not happen when processes p; and p, disagree on
their fork choice. The above two example properties show that, for nondeterministic programs,
consequences hold for every possible nondeterministic choice (the demonic perspective), whereas
implicants hold for at least one nondeterministic choice (the angelic perspective).

Thanks to its generality, LOUD can also capture reasoning capabilities of Hoare logic [23] (e.g.,
computing weakest liberal precondition and strongest postcondition) and incorrectness logic [10, 31]
(e.g., computing weakest possible precondition and weakest under-approximate postcondition).

New Synthesis Algorithms in Loup. Existentially quantified queries and the ability to synthesize
both over- and under-approximations make the Loup framework more expressive than spYro, but
also make synthesis more challenging, thus requiring new algorithmic insights.

Park et al. [34] presented a counterexample-guided synthesis (CEGIS) algorithm for solving
problems in the spYro framework. The algorithm accumulates positive and negative examples of
possible program behaviors with respect to the given query and synthesizes £-properties consistent
with them. A primitive called CHECKSOUNDNEsS checks if a candidate property is indeed sound
and, if not, it produces a new positive example that the property fails to accept. To ensure L-
consequences are strongest, a primitive CHECKPRECISION checks if the current £-consequence is
strongest; if it is not, CHECKPRECISION returns a new .L-property that accepts all positive examples,
rejects all negative examples, and rejects one more negative example (which is also returned). By
alternating calls to these primitives, the algorithm eventually finds a strongest £-consequence.

Key contributions and innovations in how we algorithmically solve Loup problems include
(i) generalized CHECKSOUNDNESs and CHECKPRECISION primitives so that each operation has a
dual form that can be used to synthesize both £-consequences and L-implicants, and (ii) how we
implement these primitives in the presence of existential quantifiers. Specifically, proving that an
L-consequence is strongest and proving that an £-implicant is sound require solving a constraint
with quantifier alternations of the form Je. Vh. =/ (e, h) A ¢(e). To perform this check, we integrate
a counterexample-guided quantifier instantiation algorithm (CEGQI) that operates in tandem with
the overall CEGIS algorithm. The CEGIS algorithm accumulates examples that approximate the
behavior of the query, while the CEGQI algorithm accumulates instances of the quantified variable
h that show if an example is positive or negative. To our knowledge, our algorithm is the first one
to combine CEGIS and CEGQI to deal with multiple nested quantifiers.

We implement a tool, called ASPIRE, to solve the synthesis problems in the LouD framework. ASPIRE
can describe and identify sources of bugs in both deterministic and nondeterministic programs,
extract properties from concurrent programs, and synthesize winning strategies in two-player
games. Because ASPIRE is built on the top of the SKETCH program synthesizer [44], it is only sound
for programs in which inputs, recursion, and loops are bounded. In the future, this limitation can
be lifted by considering more general (though less efficient) program synthesizers [26].
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Variables { Language {

int a, M, y; D -> \/[AP,0..6]; Cl: @ <=y

exist int x; AP -> I {<=|<|==|!=}1 C2: y <M
} | isPrime(M) C3: (a == @) => (y == 0)
Query { | 'isPrime (M) C4: (a == M) => (y == @)

y = modhash(a, M, x); I >0 | al|ly | M| -M|C5: (a ==-M) => (y == 0)
3 3

(a) Query ¥ (b) DSLO (c) O-consequences

Fig. 1. (a) A query ¥ for identifying properties of modhash that hold for any choice of input x. Users declare
variables and label existentially quantified ones with the keyword exist. (b) A DSL O for over-approximations.
\/[AP, @..6] is a shorthand for the disjunction of 0 to 6 atomic propositions. (c) O-consequences by our
tool AsPIRE when given the query ¥ and the DSL O. We write p = q instead of —p V q for readability.

Contributions. Our work makes the following contributions:

e A unified logical framework, LouD, for the problem of synthesizing strongest £-consequences
and weakest L-implicants for existentially quantified queries (§3).

o Algorithms for solving LouD problems using four simple well-defined primitives: SYNTHESIZE,
CHECKIMPLICATION, CHECKSTRONGEST and CHECKWEAKEST (§4).

e An algorithm that combines CEGQI and CEGIS to efficiently implement the primitives CHECKIM-
pLICATION and CHECKSTRONGEST for existentially quantified queries (§5).

e A tool that implements our framework, called ASPIRE (§6).

e Multiple instantiations of LouD, showing its capability across a wide range of applications, e.g.,
reasoning about nondeterministic/concurrent programs and synthesizing game strategies (§7).

§8 discusses related work. §9 concludes. In the extended paper [36], §A relates LoUD to program

logics; §B contains further details about algorithms; §C contains proofs; and §D contains further

evaluation details.

2 Motivating Examples

In this section, we illustrate how the LouD framework can be used to synthesize useful over-
approximated (§2.1) and under-approximated (§2.2) properties of programs.

Consider the parametric hash function shown in Figure 2, where x is an integer input and a and
M > 0 are possible parameters—i.e., a and M are fixed in a specific implementation of modhash.
Intuitively, modhash can be viewed as a family of hash functions where the variable x is the input.

In LouD, to reason about the behavior of a program, one
provides a logical query they are interested in over- or under-
approximating with properties in a given language. For example,
one may provide the query ¥ in Figure 1a, which is equivalent
to the existentially quantified formula 3x. y = ax mod M. In this example, our goal is to identify
which choices of parameters a and M will make modhash surjective onto Zy; = {0,1,...,M — 1}.
Specifically, we seek properties that capture the relationship between the output variable y and the
parameters a and M (colored in red). To do so, we treat the input x as a nondeterministic parameter
(existentially quantified and thus colored in blue).

int modhash (int a, M, x) {
return a * x mod M; }

Fig. 2. modhash function

2.1 Over-Approximate Reasoning

We start with properties that are consequences (over-approximations) of the query in Figure 1a.
That is, we want formulae ¢(y, a, M) such that Yy, a, M. (3x. y = ax mod M) = ¢(y, a, M).
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As argued by Park et al. [34], different applications—e.g., generating type judgments or generating
algebraic specifications—require formulae to adhere to a specific syntactic fragment. Thus in our
framework, users are in charge of providing a DSL £ as an input to express properties they are
interested in; we call properties expressible in this DSL L-properties. We note that the DSL £
might contain user-given functions for which an implementation should be provided. Furthermore,
we say an L-property ¢ is an L-consequence if it is a consequence of the given query formula.
One goal of our framework is to synthesize a set of incomparable strongest L-consequences.

In our example, the user provides the DSL O shown in Figure 1b, which includes the constant
0, all free variables and comparison operations between them, and also the user-defined function
isPrime (together with its implementation) that is potentially related to the problem.

An incomparable set of strongest O-consequences for the query ¥ is shown in Figure 1c. Since
conjoining two consequences of ¥ results in a stronger consequence of ¥, we interpret the set of
properties as their conjunction and thus call the set an O-conjunction. The properties in Figure 1c
give us insights into the behavior of the function modhash—e.g., that setting the value of a to be
equal to M or —M is probably not a good idea as it would result in a function that always returns
y = 0. For our discussion, we focus our attention on the first two properties, which imply that the
output y falls within 0 < y < M. A well-designed hash function with a set S as range should be
surjective onto the set S, meaning that for every value v in S, there should be inputs that yield
v as output. However, because the formulae in Figure 1c are over-approximations, we are not
guaranteed that all the values in 0 < y < M are indeed possible outputs of modhash.

2.2 Under-Approximate Reasoning

Over-approximation alone cannot capture whether a specific program behavior can occur—i.e.,
is reachable. For a formula ¢(y, a, M) to define a reachability condition (i.e., a behavior that must
happen) of y from some input x, the formula ¢ (y, a, M) must be an implicant (under-approximation)
of the query ¥, which formally can be stated as follows: Yy, a, M. ¢(y, a, M) = 3x.y = ax mod M

We say an L-property ¢ is an L-implicant if it is an implicant of the given query formula.
Another goal of our framework is to synthesize a set of incomparable weakest £-implicants.

In our example, the user provides the DSL U using the rules for AP and I as shown in Fig-
ure 1b, but replaces disjunction rules (nonterminal D) with the conjunction rules C -> /\[AP,
0..6]. Throughout the paper we will use O to denote the language from Figure 1b in examples
involving over-approximations, and U for the language described here in examples involving
under-approximation. For instance, a = 0 A y = 0 is a U-implicant for query ¥, but not a weakest
one, as it strictly implies a ¢-implicant y = 0.

. I1: == 0
A mutually incomparable set of weakest U- . Z e a/Na<M/ ey
%mphcants for the query‘l{ls show.n in Flgur.e 3.We .., YAy <M\ M < a
interpret the set of properties as their disjunction and N a <M /\ a =0 /\ isPrime(M)

refer to the set as a U-disjunction. Each formula pro-
vides a sufficient condition for reachability of the out-
put y—that is, if y, a and M satisfy any formula in Figure 3, then there exists an input x such
that y = ax mod M. Crucially, the last formula provides a sufficient condition for modhash to be
surjective onto Zy = {0, 1, ..., M — 1}—i.e,, for a prime value of M and non-zero value of a selected
from the range —M < a < M, all values of y in Z,; are attainable from some choice of input x.
While our primary motivation is to model nondeterminism, the generality of our framework
enables a variety of other applications. In particular, existential quantifiers can be used to model
both forward and backward reasoning in the style of Hoare and incorrectness program logics for
both deterministic and nondeterministic programs. For example, given a program and a predicate

Fig. 3. Synthesized U-implicants.
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over its output, one can synthesize preconditions on what input may produce (over-approximate)
or must produce (under-approximate) an output that satisfies the given predicate.

A detailed discussion of various applications of our framework is provided in Section 7 and
Appendix A.

3 Strongest Consequences and Weakest Implicants

In this section, we describe our framework, which extends the strongest £-consequences synthesis
framework of Park et al. [34] in two key ways: (i) allowing existentially quantified variables, and
(ii) enabling the synthesis of both the strongest L-consequences and weakest £-implicants.

We describe what inputs a user of the framework provides, and what they obtain as output.
Input 1: Query. The query ¥ is a first-order formula of the form 3h. (v, h), where ¢ is a quantifier-
free formula ¥. The inclusion of the existentially quantified variables 4 in the query is a key novelty
of this paper: it enables many new applications such as reasoning about nondeterministic programs,
and forward and backward reasoning in program logics (Section 7.2).

We use the symbol k (for hidden) to represent existentially quantified variables and the symbol v
(for visible) to represent free variables. In practice, both & and v can be tuples and denote multiple
variables. In our motivating examples, queries are given in Figure 1a.

Input 2: Grammar of L-properties. The grammar of the DSL £ in which the synthesizer is to
express properties for the query. Each formula ¢ in the DSL L is a predicate defined over the free
variables v of the query 3h. ¢/(v, h). An example of a DSL is the language O in Figure 1b.

Input 3: Semantics of the program and operators. Semantics of the function symbols that
appear in query ¥ (e.g., modhash) and in the DSL £ (e.g., isPrime). In our implementation, semantic
definitions are given as a program in the SKETcH language [44], which automatically transforms
them into first-order formulas. For example, one may provide a C-style function written in SKETCH
that checks whether a number between 2 and +/n is a divisor of n as the semantic of isPrime. We
discuss in Section 6 how skETCH works and examine the limitations of this approach.

Output: Strongest £-consequences and weakest L-implicants. Our goal is to synthesize a
set of incomparable strongest L-consequences and a set of incomparable weakest £-implicants of
query V. Ideally, both strongest £-consequence and weakest L-implicant would be the formula
that is exactly equivalent to 3h. ¢/ (v, h), but in general, the DSL £ might not be expressive enough
to do so. As argued by Park et al. [34], this feature is actually a desired one as it allows for the
application of our framework to various use cases, as demonstrated in Section 7. Because in general
there might not be an £-consequence and an L-implicant that are equivalent to 3h. ¥/(v, h), the
goal becomes instead to find L-properties that tightly approximate 3h. (v, h).

We denote the set of models (over the free variables of ¥) of a formula ¢ as [¢]. For example in
Section 2.1, [y > 0] represents the set of models {(y, a, M) | y > 0}. We say ¢ is stronger than ¢’
(or ¢’ is weaker than @) when [¢] C [¢’], and ¢ is strictly stronger than ¢’ when [¢] C [¢'].

Definition 3.1 (A strongest L-consequence). | Definition 3.2 (A weakest L-implicant). An L-
An L-property ¢ is a strongest L-consequence | property ¢ is a weakest L-implicant for a query
for a query ¥ if and only if V¥ if and only if
(i) ¢ is a consequence of the query ¥: (i) ¢ is an implicant of the query ¥:
IsConsy (@) := Vo. [Th. (v, h) = ¢(v)] IsImpry (¢) == Yo. [p(v) = Fh.¥(v, h)]
(ii) ¢ is strongest with respect to ¥ and L: (ii) ¢ is weakest with respect to¥ and L:
~3¢’ € £. 5Consy (") A [¢'] < [o] 3¢’ € L. Istwrny(p) A [o'] > [o]
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Throughout the paper, we also use the term most-precise to mean strongest for £-consequences
and weakest for £-implicants. We use SCons £ (¥) and WImpl , (¥) to denote the set of all strongest
L-consequences and the set of all best L-implicants for ¥, respectively. Because £ may not be
closed under conjunction (and disjunction), strongest £-consequences (and weakest L-implicants)
may not be semantically unique. In Section 2.1, both formulae 0 < y and y < M are strongest
L-consequences of query ¥, and neither implies the other.

The goal of our framework is to find a semantically strongest conjunction of incomparable

strongest L-consequences and a weakest disjunction of incomparable weakest L-implicants.

Definition 3.3 (Best L-conjunction). A poten-
tially infinite set of L-consequences I1 = {¢;}
forms abest L-conjunction ¢, = A; ¢; for query
¥ if and only if

(i) each ¢; € 11 is a strongest L-consequence of ¥;
(ii) every distinct ¢;, p; € II are incomparable—
e, [oi] \ [os] # 0 and [o;] \ [pi] # 0;

(iii) the set is semantically minimal—i.e., for every
strongest L-consequence ¢ we have [p,] C [¢].

Definition 3.4 (Best L-disjunction). A poten-
tially infinite set of L-implicants I1 = {¢;} forms
a best L-disjunction ¢y = V/; ¢; for query ¥ if
and only if

(i) each ¢; € 11 is a weakest L-implicant of ¥;
(ii) every distinct ¢;, ¢; € II are incomparable—
i, [oi] \ [p;] # 0 and [o;]\ [oi] # 0;

(iii) the set is semantically maximal—i.e., for every
weakest L-implicant ¢ we have [py] 2 [¢]-

Best L-conjunctions and best £-disjunctions are not necessarily unique, but they are all logically
equivalent. Specifically, a best L-conjunction is equivalent to the conjunction of all possible
strongest L-consequences, and a best .£-disjunction is equivalent to the disjunction of all possible
weakest L-implicants. Note that best means more than semantic optimality because a strongest £-
conjunction is not necessarily a best £-conjunction; predicates ¢;(x) := x > 0 and @2 (x) :==x > 1
could form a strongest £-conjunction, but it is not a best one because ¢; is strictly stronger than
@z-i.e., p; and ¢, are comparable.

THEOREM 3.1 (SEMANTIC OPTIMALITY). If @5 is a best L-conjunction, then its interpretation
coincides with the conjunction of all possible strongest L-consequences: [¢A]] = [N\ pescons, v) ¢1- If
@v is a best L-disjunction, then its interpretation coincides with the disjunction of all possible best

L-implicants: [ov] = [V pe wimpt,, v) ]-
We are now ready to state our problem definition:

Definition 3.5 (Best £-conjunction and £-disjunction Synthesis). Given query ¥, the concrete
semantics for the function symbols in ¥, and a domain-specific language L with its corresponding
semantic definition, synthesize a best L-conjunction and L-disjunction for ¥.

Practical remarks. The algorithm presented in Section 4 computes finite .£-conjunctions and
L-disjunctions, but it is possible that a solution to a given LouD problem instance requires an
infinite number of conjuncts (or disjuncts). Even in this case, because the algorithm incrementally
computes incomparable strongest £-consequences (or weakest L-implicants), one can stop it at
any point and all computed £L-consequences (or L-implicants) will form a valid £-conjunction (or
L-disjunction), just not a best one. The benchmarks considered in Section 7 do not encounter this
problem since they consider finite (though very large) languages.

Note that Definition 3.3 and 3.4 only guarantee that each pair of synthesized properties is
incomparable. However, ensuring that each ¢; is incomparable to the entire set of properties
IT\ {¢;} only requires checking a single implication for each ¢;, which can be trivially done in a
postprocessing phase. In practice, it is quite rare to encounter a redundant conjunct or disjunct.
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4 Counterexample-Guided Inductive Specification Synthesis

In this section, we present algorithms for synthesizing best £-conjunctions and best £-disjunctions.
We follow the example-guided approach proposed by Park et al. [34] that synthesizes strongest
L-consequences. In tandem, we present a dual algorithm to synthesize weakest £-implicants, and
we extend both algorithms to allow existentially quantified query formulas.

We first present the primitives necessary to instantiate the synthesis algorithms (Section 4.1).
Then, we present the algorithms for synthesizing a single £-consequence or L-implicant that is
incomparable to all the ones synthesized so far (Section 4.2). Finally, we present the algorithms for
iteratively synthesizing the properties forming an £-conjunction or an £-disjunction (Section 4.3).

4.1 Synthesis from Positive and Negative Examples

The algorithms for synthesizing strongest L-consequences and weakest £-implicants maintain
two sets of examples: a set of positive examples E*, which should be accepted by the synthesized
predicates, and negative examples E~, which should be rejected by the synthesized predicates.

Definition 4.1 (Examples). Given a query ¥ := 3h. (v, h) and a model e over the free variable v of
query ¥, we say that e is a positive example if (e, h) holds true for some value of h (i.e., e € [¥])
and a negative example if (e, h) does not hold for all values of h (i.e., e ¢ [¥]).

EXAMPLE 4.1 (POSITIVE AND NEGATIVE EXAMPLES). Given the query ¥ := 3x.y = ax mod M, the
model that assigns y to the integer 1, a to the integer 6, and M to the integer 5 is a positive example,
because the choice of value x = 1 makes the equation 1 = 6 mod 5 holds true. For brevity, we represent
such example as (1, 6,5), where it denotes a valuation to the tuple (y, a, M). The following examples
are negative ones because no value of x satisfiesy = ax mod M: (=1, 1,3), (3,1,3), (3,2,6).

Because the DSL £ might not be expressive enough to capture the exact behavior of the query
¥, in general there is no predicate capable of accepting all the positive examples and rejecting all
the negative examples. Intuitively, a strongest £-consequence must accept all positive examples
while also excluding as many negative examples as possible.

ExaMPLE 4.2 (EXAMPLES AND .L-CONSEQUENCES). Consider again the query ¥ := 3x.y = ax mod
M and the set of strongest O-consequences {0 < y,y < M,a=0=y=0a=M=>y=0,a=
—M = y = 0} from Figure 1c. While a positive example (y,a, M) = (1,6,5) is accepted by all O-
consequences, the negative example (3, 2, 6) is not rejected by any of them. In fact, the O-consequences
in Figure 1c form a best L-conjunction, so (3,2, 6) cannot be rejected by any strongest O-consequence.

As illustrated by Example 4.2 when attempting to synthesize £-consequences, we can consider
positive examples as hard constraints but need to treat negative examples as soft constraints.

For L-implicants, the role of positive and negative examples is inverted. A weakest L-implicant
must reject all negative examples while also accepting as many positive examples as possible.

ExAMPLE 4.3 (EXAMPLES AND L-IMPLICANTS). Consider again the query ¥ := 3x.y = ax mod M
and the set of weakest U-implicants {y = 0,0 <a<MAa=y, 0<y<MA-M<a<MAa#
0 A isPrime(M)} from Figure 3. While the negative example (y, a, M) = (3,2, 6) is rejected by all
U-implicants, the positive example (1,6,5) is not accepted by any of them. The U-implicants in
Figure 3 form a best L-disjunction, so (1, 6,5) must be rejected by every weakest U-implicants.

We are now ready to introduce the generalizations of the key operations used by Park et al. [34] to
synthesize strongest £-consequences: SYNTHESIZE (Section 4.1.1), CHECKIMPLICATION (Section 4.1.2)
and CHECKSTRONGEST (Section 4.1.3). Additionally, we introduce CHECKWEAKEST (Section 4.1.3), an
operation used alongside SYNTHESIZE and CHECKIMPLICATION to synthesize weakest £-implicants.
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4.1.1 Synthesis from Examples. While strongest £-consequences and weakest £-implicants can
effectively treat some of the examples as soft constraints, as we will show in Section 4.2, our
synthesis algorithm can find such properties by iteratively calling a synthesis primitive SYNTHESIZE
that treats a carefully chosen set of examples as hard constraints. Avoiding soft constraints was
one of the key innovations of Park et al. [34] with respect to prior work [25].

Given a set of positive examples E* and a set of negative examples E~, the procedure
SYNTHESIZE(E™, E7) returns an L-property ¢ that accepts all the positive examples in E* and rejects
all the negative examples in E~, if such an L-property ¢ exists. If no such L-property exists, then
SyntHESIZE(EY, E7) returns L. Given a set of examples E, we write ¢(E) to denote the conjunction
Necr @(e) and —¢(E) to denote the conjunction A,z —¢(e). The operation SYNTHESIZE(E*, E7)
can be expressed as the formula 3¢. ¢(E*) A =@(E7).

EXAMPLE 4.4 (SYNTHESIZE). Example 4.2 showed there can be a negative example that no L-
consequences can reject. With the DSL O defined in Figure 1b, if E* = {(1,6,5)} and E~ = {(3,2,6)},
then SYNTHESIZE(E*, E™) can return the formula ¢(y, a, M) := y < a, which is not a consequence of
the query ¥ := 3x.y = ax mod M. In this case, once more positive examples are added to E* (which is
something our synthesis algorithm automatically takes care of), SYNTHESIZE will return L. For example,
if E* is augmented to the set {(1,6,5), (1, 1,5), (1, =4, 5), (6, 2, 8) }, then SYNTHESIZE(E", E™) returns
L —i.e., the negative example (3,2,6) cannot be rejected by any O-consequences and our synthesis
algorithm will later remove it from E~.

4.1.2  Checking Implication. The CHECKIMPLICATION primitive described in this section allows us
to check whether a formula is valid £-implicant or a valid £-consequence.

Given two predicates ¢ and ¢’, the primitive CHECKIMPLICATION (¢, ¢”) checks whether ¢ is an im-
plicant of ¢’ (or dually, whether ¢’ is consequence of ¢). In logical terms, CHECKIMPLICATION (¢, ¢”)
checks whether there does not exist an example e that is accepted by ¢ but rejected by ¢’; it returns
T or an example if the check fails. This check can be expressed as —=Je. ¢’ (e) A ¢(e).

CHECKIMPLICATION(Y, ) returns T if a predicate ¢ is a consequence of V. Similarly,
CHECKIMPLICATION (¢, ¥) returns T if a predicate ¢ is an implicant of ¥.

ExaMPLE 4.5 (CHECKIMPLICATION). Consider again the query ¥ := 3x.y = ax mod M. Because
the formula ¢(y, a, M) := y < a is not a consequence of ¥, the primitive CHECKIMPLICATION (¥, ¢)
would return a positive example that is rejected by ¢, such as (1,—4,5). On the other hand, calling
CHECKIMPLICATION(Y, ¢”) on the formula ¢’ (y, a, M) := y > 0 would instead return T because the
formula ¢’ is indeed a consequence of V.

Similarly, for the formula ¢(y,a,M) := y < a, which is also not a implicant of ¥, run-
ning CHECKIMPLICATION(¢, ¥) (where this time the query ¥ is the second parameter) would re-
turn a negative example that is accepted by ¢, such as (=1,1,3). On the other hand, running
CHECKIMPLICATION(¢', ¥) on the formula ¢’(y,a, M) = y = 0 would instead return T because
the formula ¢’ is an implicant of V.

The CrECKIMPLICATION procedure can be implemented using a constraint solver. However, the
presence of quantifiers in implicants can result in a constraint with alternating quantifiers, making
the check computationally harder, and most importantly, outside the capabilities of solvers that do
not support quantifiers. We discuss a practical procedure for performing this check in Section 5.

4.1.3 Checking Precision. Checking precision—i.e., whether an £-consequence is strongest or
whether an £-implicant is weakest—requires more sophisticated queries than the one described
above. Specifically, one cannot simply ask whether there exists a negative example that is accepted
by ¢ to check whether ¢ is a strongest £-consequence, because, as shown in Example 4.2, there
might be some negative example that must be accepted by every strongest £-consequence.
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In theory, to prove or disprove that an £-consequence ¢ is strongest one needs to check whether
there exists an L-property ¢’ that is (i) a consequence of the query ¥ (i.e., ¢” accepts all the positive
examples) and (ii) strictly stronger than ¢ (i.e., ¢’ rejects at least one more negative example while
rejecting all the negative examples that were already rejected by ¢). Such a check would be too
expensive as it effectively asks one to synthesize a provably sound £-consequence.

Our algorithm does not require such a powerful primitive, and instead approximates (i) and (ii)
using a set of positive examples E* accepted by ¢ and a set of negative examples E™ rejected by ¢.
By combining implication and precision checks in a counterexample-guided fashion, our algorithm
improves the approximation over time and is thus sound.

Given an L-consequence ¢, a set of positive examples E* accepted by ¢, a set of negative
examples E~ rejected by ¢, a query ¥, and the £-consequences ¢, we have already synthesized,
CHECKSTRONGEST(¢, 9, ¥, E*, E7) checks if there do not exist an L-property ¢’ and an negative
example e ¢ [¥] satisfying ¢, such that: (i) ¢’ accepts all the positive examples in E*; (ii) ¢’ rejects
e and all the negative examples in E~, whereas ¢ accepts e. In our algorithm, the formula ¢, is
used to ensure that the example produced by CHECKSTRONGEST is not already rejected by best
L-consequences we have already synthesized. The above check can be logically stated as follows:

CHECKSTRONGEST(@, 05, ¥, ELE™) = =3¢’ e.=F(e) Apnr(e) Ap(e) A=’ (e) A" (EN) A=’ (E7) (1)
The highlighted part of the formula is what changes when checking if the formula is weakest.

ExAMPLE 4.6 (CHECKSTRONGEST). Consider again the query ¥ := 3x.y = ax mod M, and an
O-consequence ¢(y, a, M) := y # M, which is not a strongest one.

CHECKSTRONGEST (¢, T, ¥, {(1,6,5)}, {(3,1,3)}) can return a strictly stronger O-consequence
¢1(y,a, M) ==y < M with a negative example e = (6,1,5).

However, because CHECKSTRONGEST only considers whether the formula ¢ is strongest with respect
to the examples {(1,6,5)},{(3, 1,3)}, it can also alternatively return a property that is not an actual
O-consequence—e.g., p,(y,a, M) := y < a with a negative example e; = (6,1,5). The formula ¢, is
not a O-consequence of ¥ as it rejects the positive example (1,—4,5).

When checking if an £-implicant ¢ is a weakest one, we can perform a dual check and ask if
there does not exist an L-property that can accept one more example than the current formula.
That is, CHECKWEAKEST (¢, ¢y, ¥, E*, E™) checks whether there do not exist an L-property ¢’ and
a positive example e € [¥] satisfying ¢y such that: (i) ¢’ accepts all the positive examples in E*;
(ii) ¢’ accepts e and all the positive examples in E*, whereas ¢ rejects e. This check can be logically
stated as

CHECKWEAKEST (¢, ¢y, %, EL E7) = =3¢ . ¥ (e) A=y (e) A=p(e) Ap'(e) A" (ET) A=’ (E7) (2)

ExamPLE 4.7 (CHECKWEAKEST). Consider again the query ¥ := 3x.y = ax mod M, and a U-
implicant ¢(y,a,M) = y = 0 A a = 0, which is not a weakest U-implicant. CHECKWEAKEST
(@, L,%9,{(0,0,5)},{(3,2,6)}) can return a strictly weaker U-implicant ¢|(y,a, M) :=y = 0 witha
positive example ef = (0,1,5). However, for the same reasons outlined in Example 4.6, the returned
property may not be a U-implicant.

The CHECKSTRONGEST and CHECKWEAKEST procedures are effectively solving a synthesis
problem—i.e., they are looking for a formula—and implementing them requires a form of example-
based synthesis. Again, the presence of quantifiers in the negation of the query —¥ for CHECK-
STRONGEST can result in constraint (1) containing alternating quantifiers, thus bringing us outside
of the capability of many program synthesizers. We discuss a practical procedure for sidestepping
the quantifier-alternation problem and performing this check in Section 5.
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Algorithm 1:

SYNTHSTRONGESTCONSEQUENCE (¥, @, @init, EY,E7)

Algorithm 2:

SYNTHWEAKESTIMPLICANT (‘I’, OV, Pinits ET, E‘)

1 @, Plast < Pinit; E;_nay <0
2 while true do

e « CHECKIMPLICATION (¥, ¢)
if et # T then
E* « E*t U {e*}

1 @, QPlast < q)init;E;Lnay «—0
2 while true do

e~ « CHECKIMPLICATION (¢, ¥)
if e~ # T then
E- «—E U{e }

6 @'« SynTHESIZE(E',E~ UE;,,,) 6 @’ « SYNTHESIZE(E® U EJ,,,, E7)
7 if ¢’ # 1 then 7 if ¢’ # 1 then

8 | o= 8 | o—o

9 else 9 else

10 L @ < Qlast; Er_nay <0 10 L @ < Qlast; E;rnay <0

1 else 1 else

12 ET «E UELq4y Engy <0 12 EY — E"UE} .y Ehay < 0

13 Plast < ¢ 13 Plast < ¢

14

15

e, ¢’ —CHECKSTRONGEST (¢, g, V,E*,E7)
if e~ # T then

e*, ¢’ —CHECKWEAKEST (@, ¢y, ¥, Et,E™)
if et # T then

16 Eray < {e7} 16 Efpay < e}
17 o ¢ 17 ¢
18 else 18 else

19

L return ¢, E*, E~

L return ¢, E*,E~

4.2 Synthesizing One Strongest L-Consequence and One Weakest L-Implicant

We are now ready to describe our main procedures: SYNTHSTRONGESTCONSEQUENCE (Algorithm 1)
and SYNTHWEAKESTIMPLICANT (Algorithm 2). We first recall the description of SYNTHSTRONGEST-
CONSEQUENCE by Park et al. [34], the algorithm that synthesizes a strongest £-consequence that is
incomparable with the £-consequences we already synthesized (the algorithm will be used in Sec-
tion 4.3 to synthesize one £-consequence at a time). We then describe one of the contributions of this
paper, i.e., how the algorithm changes for its under-approximated dual SYNTHWEAKESTIMPLICANT.

4.2.1 Synthesizing One Strongest L-Consequence. Given a query formula ¥ and a conjunction of
L-consequences we have already synthesized ¢, the procedure SYNTHSTRONGESTCONSEQUENCE
synthesizes a strongest L-consequence ¢ for the query ¥ that is incomparable to the already
synthesized formulas in ¢,. We say an L-consequence ¢ for the query ¥ is strongest with respect
to @, if there does not exist an L-consequence ¢’ for ¥ such that ¢’ A @, is strictly stronger than
¢ A ppr—i.e., the L-consequence ¢ is incomparable to all the L-consequences in @4.

In each iteration, SYNTHSTRONGESTCONSEQUENCE performs two steps. First, it uses CHECKIM-
PLICATION to check whether the current candidate ¢ is a consequence of ¥ (line 3). Second, if the
candidate ¢ is a consequence of ¥, it uses CHECKSTRONGEST to check whether ¢ is strongest with
respect to ¢, (line 14). The algorithm terminates once a formula passes both checks (line 19).

If the current candidate ¢ is not a consequence of ¥, CHECKIMPLICATION returns a positive
example e* (line 3). The algorithm then adds e* to the set of positive examples E* and uses it to
SYNTHESIZE a new candidate L-property (lines 5 and 6).

If the current candidate ¢ is a consequence of ¥ but there is an L-property ¢’ that aligns with
the current set of positive and negative examples, E* and E~, and can reject one more negative
example e”, CHECKSTRONGEST returns this property ¢’ along with the negative example e™. The
example e~ is then temporarily stored in E,,,,, without immediately updating E™ (line 16). Updating
E~ is delayed because ¢’ may not be a consequence of the query ¥ (Example 4.6), and in the worst
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case, there might not exist an £-consequence that rejects e~ (Example 4.2). The example stored in
E ay can be safely added to E~ when CHECKIMPLICATION verifies that L-property ¢ returned by
CHECKSTRONGEST is indeed a consequence of the query ¥ (line 12); at this point we are certain
that the example in E;, ., can be rejected by at least one L-consequence, as witnessed by p.!

The candidate L-property returned by CHECKSTRONGEST in line 14 is only guaranteed to be
consistent with the examples, and therefore must be checked again by CHECKIMPLICATION in line 3.
If the candidate fails to pass CHECKIMPLICATION, the algorithm keeps adding more positive examples
until either (i) it finds a L-consequence that rejects all the negative examples in E~ U E_ ;. or (ii)
SYNTHESIZE in line 6 fails to find an L-property. In the latter case, SYNTHSTRONGESTCONSEQUENCE
concludes that the example in E;,,, cannot be rejected by any L-consequence and thus restarts
after discarding the example in E,,, (line 10). For efficiency, whenever E™ is updated in line 12,
the algorithm stores the current £-consequence ¢ that rejects all the negative examples in E~ in a
variable ¢j,5; (line 13). In this way, the algorithm can revert to ¢;45; when E;ay 1s discarded (line

10).

ExaMPLE 4.8 (ALGORITHM 1 RUN). Consider the query ¥ := 3x.y = ax mod M. The table below
shows the last 4 iterations in a possible execution of SYNTHSTRONGESTCONSEQUENCE (¥, T, T, 0, 0).
Specifically, it shows the value of ¢, E*, and E~ at the start of each iteration (Line 2). In the table,
el = (y,a,M) = (1,6,5),e; = (1,1,5),e] = (1,=4,5).¢; = (6,2,8), e; = (8,1,8),e; = (3,2,6),
e; =(6,2,5).

Iteration n — 3. So far the algorithm has computed an O-consequencey # M that is not a strongest one.
Therefore, CHECKIMPLICATION passes but CHECKSTRONGEST fails, and the execution reaches Line 16.
Then ¢ is set to a new candidiate isPrime(M), and a negative example e, is added to E, .

Iteration n — 2. The property isPrime(M) is not an O-consequence, so CHECKIMPLICATION fails. The
execution reaches Line 5, and a positive example e is added to E*. As discussed in Example 4.4, e;

cannot be rejected by any O-consequence, so SYNTHESIZE fails, ¢ is reverted toy # M, and E,, ;. is
cleared.

Iteration n — 1. Similar to iteration n — 3 but with a

new positive example ej added, CHECKSTRONGEST ~ [rr. ¢ s - E-
- . : may
returns a n_ew cafldw.llatey <M a_nda new negative —, _3 v M {ezr, e;, e3+} ;1 0
example 3, which is added to EL ;. n—2 | isPrime(M) {efef e} {e]} {e)
Iteration n. The propertyy < M is indeed a strongest n — 1 y#M {ef e}, e;, ef}{ef} 0
O-consequence, so it passes both the CHECKIMPLI-  n y<M {ef,ej.el.er) {ef} {eg}
CATION and CHECKSTRONGEST and is finally re-
turned.

Once SYNTHSTRONGESTCONSEQUENCE terminates, it returns a strongest £-consequence for ¥
(with respect to ¢, ) that accepts all the examples in E* and rejects all the examples in E~. Informally,
if CHECKIMPLICATION returns T, then the property is an £-consequence, and if CHECKSTRONGEST
returns T, then the property is a strongest property.

SYNTHSTRONGESTCONJUNCTION is also guaranteed to terminate for a finite DSL, when every
call to primitives SYNTHESIZE, CHECKIMPLICATION and CHECKSTRONGEST terminates. Informally,
CHECKIMPLICATION at Line 3 can only return a counterexample (i.e., ¢ is not a consequence)
finitely many times, and CHECKSTRONGEST at Line 14 can only return a counterexample (i.e., ¢ is
a consequence but not a strongest one) finitely many times between successive instances where
CHECKIMPLICATION returns T. The full proof is in Appendix C.

1Delaying the update of negative examples enables treating all negative examples in E~ as hard constraints. This is a key
innovation by Park et al. [34] over prior work [25].
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4.2.2 Synthesizing One Weakest L-Implicant. Given a query formula ¥, a disjunction of £-
implicants we already synthesized ¢y, the goal of the procedure SYNTHWEAKESTIMPLICANT is
to synthesize a strongest L-implicant ¢ for the query ¥ that is incomparable to the already synthe-
sized formulas in ¢y .

We say an L-implicant ¢ for the query ¥ is weakest with respect to ¢y if there does not exist an
L-implicant ¢’ for ¥ such that ¢’ Vv ¢y is strictly weaker than ¢ V ¢y—i.e., the L-implicant ¢ is
incomparable to the already synthesized L-implicants.

SYNTHWEAKESTIMPLICANT solves the dual of the problem solved by SYNTHSTRONGESTCON-
SEQUENCE, and the two algorithms share the same structure. Due to the duality (i) the roles of
positive and negative examples are inverted; (ii) CHECKIMPLICATION in line 3 checks whether
@ is an implicant of ¥, instead of checking that ¢ is a consequence of ¥; and (iii) precision is
checked by CHECKWEAKEST instead of CHECKSTRONGEST. These changes are highlighted in violet
in Algorithm 2.

4.3 Synthesizing a Best £-Conjunction and L-Disjunction

We conclude by briefly recalling how SYNTHSTRONGESTCONJUNCTION works (as described by Park
et al. [34]) and present the dual algorithm SYNTHWEAKESTDISJUNCTION. These two algorithms use
SYNTHSTRONGESTCONSEQUENCE and SYNTHWEAKESTIMPLICANT to synthesize a best £-conjunction
and L-disjunction, respectively. The detailed algorithms are illustrated in Appendix B.

The algorithm SYNTHSTRONGESTCONJUNCTION iteratively synthesizes incomparable strongest £-
consequences. At each iteration, SYNTHSTRONGESTCONJUNCTION keeps track of the conjunction of
synthesized strongest L-consequences ¢,, and calls SYNTHSTRONGESTCONSEQUENCE to synthesize
a strongest L-consequence for ¥ with respect to ¢.

If SYNTHSTRONGESTCONSEQUENCE returns an L-consequence ¢ that does not reject any ex-
ample that was not already rejected by ¢,, the formula ¢, is a best L-conjunction, and thus
SYNTHSTRONGESTCONJUNCTION returns the set of synthesized L-consequences.

If SYNTHSTRONGESTCONSEQUENCE returns an £-consequence ¢ that rejects some example that
was not rejected by ¢, SYNTHSTRONGESTCONJUNCTION needs to further strengthen ¢ to a strongest
L-consequence for ¥ with respect to examples that might already be rejected by ¢,. Without
this step the returned £-consequence may be imprecise for examples that were not considered by
SYNTHSTRONGESTCONSEQUENCE because they were outside of ¢,. To achieve this further strength-
ening, SYNTHSTRONGESTCONJUNCTION makes another call to SYNTHSTRONGESTCONSEQUENCE
with the example sets E* and E~ returned by the previous call to SYNTHSTRONGESTCONSEQUENCE
together with ¢ and ¢;,;; == ¢, but with ¢, = T.

Again, because SYNTHWEAKESTDISJUNCTION solves the dual problem of the one solved by
SYNTHSTRONGESTCONJUNCTION, the two algorithms share the same structure. SYNTHWEAKESTD1s-
JUNCTION uses SYNTHWEAKESTIMPLICANT in a similar manner, but it maintains the disjunction of
synthesized weakest L-implicants instead of conjunction. For weakening, it also makes another
call to SYNTHWEAKESTIMPLICANT, but ¢, := T is replaced by ¢y := L.

Using the argument of Park et al. [34] for SYNTHSTRONGESTCONJUNCTION, assuming all the
primitives always terminate, our algorithms satisfy the following soundness and completeness
theorems, Specifically, the number of iterations in Algorithm 1 and 2 is bounded by the number of
properties in the DSL £ and the number of examples in the domain, whichever is smaller.

THEOREM 4.1 (SOUNDNESS). If SYNTHSTRONGESTCONJUNCTION terminates, g, is a best L-
conjunction for V. If SYNTHWEAKESTDISJUNCTION terminates, ¢y is a best L-disjunction for ¥.

THEOREM 4.2 (RELATIVE COMPLETENESS). Suppose that either L contains finitely many formulas,
or the example domain is finite.
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If SYNTHESIZE, CHECKIMPLICATION and CHECKSTRONGEST are decidable on L, then SYNTH-
STRONGESTCONSEQUENCE and SYNTHSTRONGESTCONJUNCTION always terminate.

If SYNTHESIZE, CHECKIMPLICATION and CHECKWEAKEST are decidable on L, then SYNTHWEAKES-
TIMPLICANT and SYNTHWEAKESTDISJUNCTION always terminate.

Part of the proof is stated in the end of Section 4.2.1. The full proof is in Appendix C.

Also, our procedure for solving problems expressed in the LouD framework iteratively synthesizes
strongest L-consequences (resp. L-implicants) that can strengthen (resp. weaken) the current
L-conjunction (resp. L-disjunction) until no further strengthening (resp. weakening) is possible.
Thanks to this iterative approach, even when the procedure does not terminate, one can output
intermediate results, which are properties that are guaranteed to be strongest (resp. weakest),
though they might not form a best £-conjunction (resp. £-disjunction).

5 Counterexample-Guided Quantifier Instantiation

In Section 4, when we discussed the main specification-synthesis loop, we assumed we were given
implementations of all the needed primitives. In this section, we explain how each primitive can be
implemented for existentially quantified queries.

CHECKSTRONGEST (line 14) in SYNTHSTRONGESTCONSEQUENCE and CHECKIMPLICATION (line 3) in
SYNTHWEAKESTIMPLICANT check for the existence of a new negative example (along with additional
constraints). However, when dealing with an existentially quantified query ¥ := 3h. (v, h), a
negative example e must be such that the formula =i/ (e, h) is valid for all values of the existentially
quantified variable h. Therefore, checking the existence of a negative example e requires solving a
formula that has alternating quantifiers. To handle these primitives involving quantifier alternation,
we propose a CounterExample-Guided Quantifier Instantiation (CEGQI) algorithm similar to the
one by Reynolds et al. [40], which can implement the primitives that require finding negative
counterexamples using only existentially-quantified formulas.

Counterexample-Guided Quantifier Instantiation for Weakest L-implicant. We start with the simpler
of the two queries, CHECKIMPLICATION in SYNTHWEAKESTIMPLICANT (line 3), which requires solving
a formula with alternating quantifiers of the following form (by negating formulas in §4.1.2):

Je.Vh. (e, h) A ¢(e) (3)

The CEGQI algorithm for solving Equation (3) iteratively builds a set H of possible values for
h and finds a value of e that is consistent with the finite set of values H. The set H is updated by
repeating the following two operations until a solution that holds for all values of 4 is found.

Generating Candidate Negative Example. Given formulae ¢, i/, and a finite set H of values the
existentially-quantified variable h can take, GENCANDIDATENEGEX (¢, i/, H) generates an example
e € [¢] such that the formula (e, h) does not hold for all the values h in the set H, if such an
example e exists. If no such example exists, GENCANDIDATENEGEX (¢, ¢/, H) returns L. Formally:

GENCANDIDATENEGEX (¢, t/, H) = Je. Aper —¥(e, h) A ¢(e) (4)
Checking Candidate Negative Example. Given a formula i/, and a candidate negative example e, the
function CHECKCANDIDATENEGEX (1), ¢) checks if there does not exist a value for the existentially

quantified variable h such that (e, h) holds true (i.e., whether there exists a value of h that makes
the example actually positive); it returns T or the value of A if the check fails. Formally:

CHECKCANDIDATENEGEX (¢, ¢) = =3h. ¢/(e, h) (5)

Counterexample-Guided Quantifier Instantiation. The CEGQI algorithm for CHECKIMPLICATION
(Algorithm 3) iteratively generates candidate negative examples using GENCANDIDATENEGEX and
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Algorithm 3: CurckImpLICATION (¢, ¥) Algorithm 4: CHECKSTRONGEST (¢, ¢, ¥, E,E7)
1 assume ¥ = 3h. ¥ (o0, h) 1 assume ¥ = 3h. ¢ (v, h)
2 He— 0 2 He— 0
3 while T do 3 while T do
4 e «— GENCANDIDATENEGEX (¢, ¥/, H) 4 e, ' —GENCANDIDATESPECNEGEX (9, v, p, EY,E-H)
5 if e = L then 5 if e = L then
6 return T 6 return T
7 else 7 else
8 h «— CHECKCANDIDATENEGEX (¢/,€) 8 h < CHECKCANDIDATENEGEX (/,€)
9 if h = T then 9 if h = T then
10 ‘ return e 10 ‘ return e
1 else 1 else
12 | H—HU{h} 12 | H—HU{h}

checks whether they are actually negative using CHECKCANDIDATENEGEX. Across iterations, it
maintains the set of values of h returned by CHECKCANDIDATENEGEX in H, and uses GENCANDI-
DATENEGEX to find an example e that behaves well for all the values in H discovered so far—i.e., e
satisfies =/ (e, H) A ¢(e) (line 4).

If GENCANDIDATENEGEX fails to find an example, it means that there is no example e satisfying
-y (e, H) A ¢(e), thereby a stronger condition in Equation (3) also cannot be satisfied. Therefore,
CEGOQI returns T (line 6)—i.e., there does not exist a valid negative example.

If GENCANDIDATENEGEX returns an example e, the example is tested by CHECKCANDIDATENEGEX
to check whether i/ (e, h) does not hold for every possible value of h and not only for values found
so far (line 8). The algorithm returns the example e once it passes the check (line 10), but if it fails
the check, a new counterexample A returned by CHECKCANDIDATENEGEX is added to the set H, and
the algorithm restarts at line 4. Note that the set of instances H can be cached and reused across
different calls to CEGQL

EXAMPLE 5.1 (ALGORITHM 3 RUN). Consider again the query ¥ := Ax.y =

ax mod M and the formula ¢ := 0 < y < M. The table on the right shows ter. | ; M i
a possible execution of how CHECKIMPLICATION(¢p, ¥) := Ve.p(e) = '

Jh. (e, h) can find a negative example and prove that ¢ is not a U- N
implicant. Specifically, it shows the values of e = (y,a, M) and h = x at S I I
implicant. Speci , = (y,a, = 3 lo 2 aloa2
the end of each iteration (Line 12) within Algorithm 3. For each iteration, 4 o 3 410
@(e) is always true for e = (y,a, M) , while (e, h) is false for all previous 5 |3 2 4|7

h = x but true for h in the current iteration.

Counterexample-Guided Quantifier Instantiation for Strongest L -consequence. The call to CHECK-
STRONGEST in SYNTHSTRONGESTCONSEQUENCE (line 14) requires solving a formula that has alter-
nating quantifiers and the following form (by negating appropriate formulas in §4.1.3):

Je, ¢".Yh. (e, h) A pa(e) A p(e) A—g’(e) A" (ET) A—g'(E7) (6)

This formula looks more complicated due to the presence of the existential variable ¢’. However,
a similar CEGQI approach to the one presented in Section 5 can also be used to solve Equation (6),
by finding a negative example and a formula in tandem.

The only change in the CEGQI algorithm for solving CHECKSTRONGEST (Algorithm 4) is that
GENCANDIDATENEGEX is replaced by a new operation, GENCANDIDATESPECNEGEX, defined as
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follows. Given formulae ¢, i/, ¢, set of examples E*, E~, and a finite set H of values the existentially-
quantified variable h can take, GENCANDIDATESPECNEGEX (¢, ¥/, A, E*, E”, H) generates an L-
property ¢’ and an example e satisfying ¢, such that (i) the formula (e, &) does not hold for all
the values h in the set H (ii) ¢’ accepts all the positive examples in E*; (iii) ¢’ rejects e and all the
negative examples in E~, whereas ¢ accepts e, if such an example e and formula ¢’ exist. If no such
example exists, then GENCANDIDATESPECNEGEX (¢, i, 9, E*, E™, H) returns L. Stated formally:

GENCANDIDATESPECNEGEX (¢, ¥, o, EY,E",H) =
Fe,¢". Apen ~¥(e,h) A oa(e) Ap(e) A—¢'(e) A" (EY) A=’ (E7) (7)

Because the variable h only appears in the constraint =i/ (e, h), whether e is indeed a negative
example can still be tested using CHECKCANDIDATENEGEX (5).

Similar to the Algorithm 3, if GENCANDIDATENEGEX fails to find an example, it means that there
is no example e satisfying Equation (7), thereby a stronger condition in Equation (6) also cannot
be satisfied. The example is only returned after it has been tested by CHECKCANDIDATENEGEX to
ensure that i/(e, h) does not hold for every possible value of h.

Correctness. The above observations are summarized as the following soundness theorem.

THEOREM 5.1 (SOUNDNESs oF CEGQI). (i) If CHECKIMPLICATION terminates with an example e,
the example e is a valid solution to the existential quantifier in Equation (3). If CHECKIMPLICATION
terminates with L, there is no example e that satisfies Equation (3). (ii) If CHECKSTRONGEST terminates
with an example e and ¢’, the example e and ¢’ are valid solution to the existential quantifier in
Equation (6). If CHECKSTRONGEST terminates with L, there is no example e and ¢’ that satisfy
Equation (6).

Because Algorithm 3 and 4 monotonically increases the size of the set H, as long as the domain
of one of the variables e and A is finite, both algorithms always terminate.

THEOREM 5.2 (CoMPLETENESS OF CEGOQI). Suppose at least one of the domains of the variables e or
h is finite. If GENCANDIDATENEGEX and CHECKCANDIDATENEGEX are decidable for y and ¢, then
CHECKIMPLICATION always terminates. If GENCANDIDATESPECNEGEX and CHECKCANDIDATENEGEX
are decidable for  and ¢, then CHECKSTRONGEST always terminates.

Therefore, when the domain is finite, the specification synthesis for an existentially quantified
query can be solved using only calls with the quantifier free part of the query.

Note that, in the worst case, CEGQI can enumerate the entire domain of h. As we demonstrate
in our evaluation, this exhaustive enumeration (which is common for CEG-style algorithms [43]) is
practically rare and a small number of examples are usually sufficient to solve the problem.

6 Implementation

We implemented our algorithms for solving synthesis problems in the Loub framework in a tool
called ASPIRE. ASPIRE is implemented in Java, on top of the SKETCH program synthesizer (v.1.7.6) [44].

Following Section 3, ASPIRE takes the following four inputs: (i) A query ¥ for which ASPIRE is to
find L-consequences or L-implicants where each variable in ¥ should be labeled either as free or
existentially quantified. (ii) The context-free grammar of the DSL £ in which properties are to be
expressed. (iii) A piece of code in the SKETCH programming language that expresses the concrete
semantics of the function symbols in ¥ and L. (iv) The bounded domain of each variable in the
query ¥—i.e., each variable is assigned a range of possible input values.

Take the motivating problem in Section 2.1 as an example: input (i) corresponds to the blocks
Variables and Query in Figure 1a, input (ii) corresponds to the block Language in Figure 1b, and
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input (iii) are SKETCH implementations of modhash and isPrime—i.e., simple imperative functions.
Input (iv) is provided via the Examples block in Figure 4, which we will discuss next.

From Grammars to SKETCH Generators. As synthesis needs to be performed over properties in
the DSL L, the context-free grammar for £ is automatically translated to a SKETCH generator. A
SKETCH generator is a construct that allows one to describe a recursively defined search space of
programs. In a generator, one is allowed to use holes (denoted with ??) to allow the synthesizer to
make choices about what terms to output. In our setting, holes are used to select which production
is expanded at each node in a recursively defined derivation tree.

ASPIRE also uses grammars, which in turn are translated to generators, to specify the values each
variable in the query ¥ can assume. Figure 4 shows how the user specifies the bounded domain of
each variable for the problem in Section 2.1. The nonterminal IG is translated to a generator that can
produce an integer from [—15, 15] (the notation ?? (4) denotes a 4-bit hole), and is used to define the
domain for variables a, y, and x. Similarly, the nonterminal PosIG defines the domain of the positive
integer variable M to be the range [1, 16]. ASPIRE also supports inductive datatypes, e.g. a generator
of lists of integers in the range [—15, 15] can be definedas [ 1ist LG -> nil() | cons(IG, LG) ].

Synthesis Primitives in SKETCH. The primitives SYNTHESIZE, Examples {
CHECKIMPLICATION in Algorithm 1, and CHECKWEAKEST in int IG -> ?72(4) | -?2?2(4)
Algorithm 2 are implemented as calls to the SKETCH synthe- for a, y, x;
sizer. Typically, a SKETCH program contains 3 elements: (i) a int PosIG -> ?2(4) + 1;
harness procedure that defines what should be synthesized, for M;
(ii) holes associated with a corresponding generator, and (iii) ¥
assertions. The harness procedure is the entry point of the ~Fig- 4. The bounded domains of vari-
SKETCH program, and together with the assertion it serves as ables in problem Section 2.1
a specification for what values the holes can assume to form a valid solution to the synthesis
problem. Multiple harnesses in one SKETCH program are also allowed, where the goal of the skETcH
synthesizer is to find the same assignment to shared holes that make all assertions pass. For example,
when encoding SYNTHESIZE, each example is implemented as a harness with assertions indicating
that it should be positive or negative. Both CHECKSTRONGEST in SYNTHSTRONGESTCONSEQUENCE
(Algorithm 1) and CHECKIMPLICATION in SYNTHWEAKESTIMPLICANT (Algorithm 2) are implemented
using the CEGQI approach described in Section 5 (Algorithms 4 and 3, respectively). These al-
gorithms are implemented as separate procedures where each call to GENCANDIDATENEGEX and
CHECKCANDIDATENEGEX only has an existential quantifier, and can thus be implemented as a
single call to the skeETCH synthesizer.

Bounds. skeTcH allows one to provide bounds for recursion and loops to make synthesis tractable.
In ASPIRE, we need to consider two kinds of bounds.

First, one has to bound the depth of each recursive generator. Concretely, this bound means
that ASPIRE can only support DSLs where the derivation trees have bounded height (AspIrE allows
one to specify the bound for each DSL). As recursive generators are used to produce examples
for inductive datatypes—e.g. list—one also has to bound the height of such examples. Second, one
has to bound how many times a loop can be unrolled/executed. We will discuss in Section 7 what
benchmarks are in theory affected by these bounds. Additionally, these bounds limit DSLs and
example domains to a finite size, ensuring that our algorithms in theory terminate (Theorem 4.2).

Timeout. We use a timeout of 20 minutes, after which AsPIRE returns the current £-consequences
(or L-implicants). Although it might not be the strongest L-consequences (or weakest L-
implicants), each individual £-consequence (or L-implicant) is a strongest (or a weakest) one.
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7 Evaluation

Our evaluation of ASPIRE consists of two parts. The first part consists of simple deterministic and
nondeterministic programs (from [3, 8, 34]) for which we could manually inspect whether ASPIRE
computed the correct properties (§7.1). The second part showcases the capabilities of AspPIRE and
the flexibility of the LouD framework through three case studies: forward/backward reasoning
for incorrectness logic (§7.2), synthesizing properties of concurrent programs (§7.3), and solving
two-player games (§7.4). The evaluation highlights that the programmable queries and customized
DSLs in the LouD framework enable it to express a wide range of problems. All our case studies
involve underapproximation and/or existential quantifiers. For each case study, we describe how
we model the problem in Loup, how we collected the benchmarks, how we designed the DSLs,
and we present an analysis of the running time and effectiveness of AspIRE and of the quality of
synthesized L-consequences and L-implicants.

We ran all experiments on an Apple M1 8-core CPU with 8GB RAM. Each benchmark was run 3
times (timeout 20 minutes), with different random seeds for the SKkETCH solver. 2 All results in this
section are for the median of three runs (by synthesis time).

7.1 Testing AsPIRE with Simple Programs

We conducted two experiments on simple programs for which we could manually check whether
the synthesized properties were sound and strongest/weakest.

We provide a brief description of each experiment, but details about each problem, running times,
concrete DSLs, and synthesized properties are discussed in Appendix D.1 (Test set I) and Appendix
D.2 (Test set II).

Test Set I: Mining Under-Approximation Specifications. We used ASPIRE to compute U/-implicants
for the 35 programs for which Park et al. [34] computed O-consequences using spYro. These
programs include integer functions, data structure manipulations, and small imperative programs.
To get the dual DSL U of each DSL O used in the original benchmarks, we replaced every top-level
production of the form S — V[AP, 0..n] with a production S — A[AP, 0..n]. Note that the queries
for all the spYro benchmarks do not contain existential quantifiers.

ASPIRE could synthesize properties for 35/35 benchmarks, and guaranteed that all of them were
best U-implicants (i.e., CHECKWEAKEST succeeded). Each benchmark takes at most 7 minutes
(the largest grammar contained 1.48 - 10'3 properties). Beause the DSL was originally designed
for overapproximations, the synthesized underapproximation properties were often trivial. For
example, for the list reverse function, ASPIRE only tells us any singleton list can be obtained as
output when providing the same one as input, but provides no properties describing the behavior
for lists of lengths greater than 1. While the synthesized properties were not informative, this
simple benchmark set allowed us to test ASPIRE’s ability to synthesize U-implicants.

Test set II: Nondeterministic programs. To test ASPIRE on problems involving existential quantifiers,
we designed 15 simple imperative programs where nondeterministic values serve as operands or
array indices—e.g., a nondeterministic sorting algorithm. To model the sequence of nondeterministic
choices taken by a program, we use an existentially quantified array of values h in the query.
Whenever the program execution reaches a non-deterministic command, the command takes the
next value of the array h.

20ur synthesis primitives are nondeterministic—i.e., SKETCH can return any possible valid counterexample or property. The
different random seeds will result in the skETCH solver selecting different such examples/formulas. ASPIRE can therefore
generate different sets of properties with different seeds, but as stated in Theorem 3.1, all best £-conjunctions (or £L-
disjunctions) are semantically equivalent.
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ASPIRE synthesizes both O-consequences and U-implicants for 14/15 benchmarks, taking less
than 400 seconds for each benchmark and guaranteeing that the synthesized properties are best
ones. All benchmarks that terminated for one run terminated for all 3 runs, with fastest and slowest
runs differing by at most 2x. The synthesized properties provide intuition for both the demonic and
angelic behaviors of these programs. For example, consider a program that nondeterministically
swaps elements of an array of length 4 to sort it: ASPIRE can tell us which initial arrays may be
sorted within n swaps (for a given n), and also identifies what kind of arrays will never be sorted in
less than n swaps. The one timeout benchmark models a merge sort that computes the number
of inverse pairs in an array of nondeterministic values; ASPIRE fails due to the complexity of the
program, which involves nested recursions and loops.

7.2 Application 1: Incorrectness Reasoning

Thanks to the support for both over- and under-approximation, some forms of forward/backward
reasoning for both Hoare logic [23] and incorrectness logic [31] can be captured in the LouD
framework. Because there has been a lot of research and there are many tools on precondition/post-
condition inference of Hoare triples, we only discuss the relation between the LouD framework and
incorrectness logic in this subsection, along with an evaluation. A complete formalization of the
relation between the LouD framework and Hoare/incorrectness logic can be found in Appendix A.

7.2.1  Relation to Incorrectness Logic. An incorrectness triple [P] s [Q] consists of a presumption P,
a statement s, and a result Q, and it has the following meaning: every final state satisfying Q is
reachable by executing program s starting from some state that satisfies presumption P:

Vo'.Q(0’) = Jo. [P(0) A [s](o,0")] (8)

Forward Reasoning: Weakest Under-approximate Postcondition. Given a program s and a presump-
tion P, the weakest under-approximate postcondition wupo(s, P) is the weakest predicate Q such that
the triple [P] s [Q] holds. We use wupo , (s, P) to denote the weakest under-approximation post-
condition expressible as a disjunction of predicates in the DSL L. From Equation (8), wupo (s, P)
can be obtained by synthesizing weakest L-implicants for the query 3o. P(0) A [s] (o, o”).

Let’s say we are interested in reasoning about the possible
behaviors of the (incorrect) implementation of a modular hash it remhash (int a, M, x) {
function remhash shown in Figure 5, where % is the remain- return a x x % M;

dgr operator (ipstead of tbe modulus). The % qperator is often ? Fig. 5. remhash function
misused when implementing a modular operation, as a % b may
yield a negative output when either a or b is negative. - o
A summary of the behaviors of remhash can be identi- __ = ¥ =
I2: -M <= a /\ a <M /\ a ==y

fied by under-approximating the query ¥y, = (Ix.y = I3: <M <=y /\ y <M

ax % M). From the perspective of incorrectness logic, under- N oM < a /\ a <M
approximating Wy, corresponds to performing forward /\ a 1= 0 /\ isPrime(M)
reasoning to find results for y when no presumption on x is
given—i.e., the presumption P(x) is T. For capturing under-
approximations of the query ¥y, we reuse the DSL U from the example in Section 2.2. A mutually
incomparable set of weakest U-implicants for query ¥,enm is shown in Figure 6, which shows that
remhash can indeed yield negative values for some choice of parameters a and M, as evidenced by
the occurrence of a state in both the second and last formulae where y is negative. In other words,
we recognize that some choices of input value can result in incorrect outcomes—i.e., negative
numbers—but we do not know which ones. As we will show next, the inputs that lead to incorrect
behaviors can be identified by backward reasoning.

Fig. 6. Synthesized U-implicants
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Variables { Language {
int a, M, x; C -> /\[AP,0..61; I1: -M < x /\ x < 0
exist int y; AP -> I {<=|<|==|!=}1 /\ @ <a/\ ac<M
3 | isPrime (M) /\ isPrime (M)
Query { | 'isPrime (M) I2: 0 < x /\ x <M
y = remhash(a, M, x); I >0 | al| x| M| -M /N -M < a /\ a<@®
y < 0; 3} /\ isPrime (M)
3
(@) Prpp (b) Usypp (c) Uyypp-implicants

Fig. 7. (a) A query ¥,y that allows identifying weakest possible preconditions that cause a bug in the remhash
function (i.e., outputing a negative number). (b) A DSL U, for expressing weakest possible preconditions.
(c) Uyypp-implicants synthesized by AsPIRE.

Backward Reasoning: Weakest Possible Precondition. Surprisingly, backward predicate transformers
for incorrectness logic do not always exist because valid presumptions may not exist. For example,
there is no predicate P making the triple [P] y = ax mod M [y = —1] true because no values of
a, M and x satisfy ax mod M = —1. To address this shortcoming O’'Hearn [31] suggests using the
weakest possible precondition wpp(s, Q), which is termed by Hoare [24] as “possible correctness”.
Intuitively, wpp(s, Q) captures the set of initial states from which it is possible to execute s and
terminate in a state that satisfies Q. When considering the remhash function from Figure 5, if Q
encodes that the output is negative, wpp(s, Q) will show which input possibly leads to a negative
output. Formally, wpp(s, Q) is the weakest P satisfying

Yo.P(0) = [3o’.Q(d") A [s](c, )] 9)

Note that P = wpp(s, Q) forms neither a Hoare nor an incorrectness triple with the program s
and the postcondition Q. As proposed by O’Hearn, we can use P = wpp(s,Q) to compute a new
postcondition Q’ = wupo(s, P) and obtain a valid incorrectness triple [P] s [Q’].

We use wpp , (s, Q) to denote the weakest possible precondition expressible as a disjunction of
predicates in the DSL £. From Equation (9), wpp (s, Q) can be obtained by synthesizing weakest
L-implicants of the query Jo’. Q(d”) A [s] (o, 0”).

For the remhash function, we have shown the existence of a bug through forward reasoning—
i.e., the output y can be negative. Now we want to compute the weakest possible precondition
(expressible in a DSL) that leads to the error state Q(y) := y < 0. Looking at Equation (9), we
can spell out that a weakest possible precondition of Q(y) for remhash is a weakest implicant of
the formula Jy. [y = ax % M A Q(y)]; one can provide to LouD the corresponding query ¥,,,, in
Figure 7a.

To capture implicants of the query ¥,,,,, we define the DSL U,,,, in Figure 7b by substituting
every occurrence of y in U with x. An incomparable set of weakest U,,,-implicants for query
W.pp is shown in Figure 7c, where each formula states sufficient conditions under which ax % M
produces a negative output—i.e., when either a or x falls within the interval (—M, 0) and the other
falls within the interval (0, M).

7.2.2  Evaluation on Incorrectness Reasoning. We collected a total of 14 benchmarks: (i) the 2
example problems remwupo and remwpp from Section 7.2.1. (ii) 6 simple illustrative examples from
the incorrectness logic paper [31], and (iii) 6 more complicated problems we crafted to illustrate
how AsPIRE’s handling of incorrectness reasoning differs from incorrectness logic. Among these
benchmarks, 7 are about L-weakest under-approximate postcondition and the other 7 are about
L-weakest possible precondition. It takes ASPIRE less than 4 seconds to solve each benchmark
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from [31] and less than 50 seconds to solve each benchmark we crafted. Evaluation details are

shown in Table 1.

Analysis of Benchmarks from [31]. We collected all the
3 triples [P]s[Q] from the examples used in [31] where s
is a nondeterministic program. However, in these triples,
there was no guarantee that Q was the weakest under-
approximate postcondition of P, or P was the weakest
possible precondition of Q. We used ASPIRE to synthe-
size wupo ; (s, P) and wpp , (s, Q) (the DSL £ contained
the same primitives appearing in the examples in [31]),
thus 3+3=6 benchmarks. We examined that each of 3
synthesized wupo (s, P) by AsPIRE was indeed a subset
of wupo(s, P), and for 2 cases the two were equal. For
the one that is not equal, wupo(s, P) is the set of all per-
fect squares numbers, whereas wupo , (s, P) is the perfect
squares numbers lower than a bound (this difference was
due to our query limiting the sample space of each vari-
able). The 3 wpp , (s, Q) synthesized by ASPIRE are equal
to wpp(s, Q).

More Complex Benchmarks. The 6 more complex
benchmarks for which we performed incorrectness
are aritl-wupo, aritl1-wpp, arit2-wupo, arit2-wpp,
hashcoll, and coin.

The benchmarks arit1 and arit2 model two arith-
metic functions “x” = ite(hy,x,—x)” and “x’ = (hy +
1) - x + hy”, where each h; € {0,1} is a nondetermin-
istic value. For both cases, we set a < x < b as a pre-
condition P (or a < x’ < b as a postcondition Q) to
synthesize wpp (s, Q) (or wupo (s, P)), and thus get 4
benchmarks in total. To use ASPIRE, we need to mark x
as existentially quantified variables when synthesizing
wupo (s, P), whereas mark x” as existentially quantified
variables when synthesizing wpp (s, P). Given a DSL
containing basic arithmetic and comparison operators,
ASPIRE synthesizes wpp , (s, Q) and wupo , (s, P) that are
equal to wpp(s, Q) and wupo(s, P).

For example, to synthesize wpp (s, Q) for arit1, one

Table 1. Applications 1to 3. LoC is the num-
ber of lines of skeTcH code used to write
the semantics of programs and operators.
|3] is the size of the domain of the existen-
tially quantified variables. #P and T(s) are
the number of properties and synthesis time
for both L-consequences and L-implicants.
Incorrectness reasoning does not require
synthesizing L-consequences.

Problem  LoC |3 L-cons. L-impl.
#P T(s) #P T(s)

remwupo 10 32 / / 3 27.05
remwpp 14 32/ /2 2627
inclwupo 13 256 / / 3 110
inc2wupo 28 64 / /9 215

. inc3wupo 16 2/ / 2 041
é inclwpp 12 256 / / 2 042
:“j inc2wpp 33 4,096 / /7 6.01
g inc3wpp 21 2/ /1 0.15
= aritiwupo 8 32 / / 2 4.03
~ arit2wupo 8 64 / / 3 296
aritlwpp 8 4 / /2 376
arit2wpp 8 8 / / 5 6252
hashcoll 87 16/ / 3 1594
coin 23 1,024 / / 1 2033
philo 79 ~10° 4 1185 3 6.15

o racel 82 64 1 071 3 0.85
2 race2 86 1,024 1 2.08 3 2.06
g race3 88 4,096 1 18.79 5 4.69
g2 rsrcl 81 16 4 273 4 167
§ rsrc2 85 256 4 5.08 4 537
rsrc3 114 ~10° 4 51.83 4 3831
rsrc4 96 ~10° 6 14561 6 81.41
obdet 52 1,057 3 211/ /
num1 47 8 10 16.13 19 13.99

© num2 47 32 25 2132 15 8.54
g rg 29 32 2 038 2 049
S nim2 59 ~10%2 2 9923 4 22.19
temp 34 120 10 125.24 10 74.65

can construct a query “3x’, hy. x” = ite(hg, x, —x) A a < x’ < b” and supply the DSL in Figure 8.
ASPIRE will synthesize the L-implicants {-b < x,x < —a,a < x,x < b}.

We briefly summarize the findings on other benchmarks. The coin
benchmark models the values one can produce using two coins that
have co-prime denominations; ASPIRE can identify a lower bound
above which all possible values can be produced using these coins. N'

C -> /\[AP,0..5];

AP -> N {<=|<|==|!=} N
N -> N' | -N'

-=> 0 | a | b | x

The hashcoll benchmark models a parametric hash function; AsPIRE

can synthesize the condition that possibly causes a hash collision.

More details are discussed in Appendix D.3.

Fig. 8. The DSL for ariti
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0 -> /\[AP,0..5] => D Cl: (ol == L /\ 02 == R)

U -> /\[AP,0..5] /\ D => Idl I7: ol ==L /\ 02 ==L

AP -> I == 'L'" | I == 'R' C2: (02 ==L /\ 03 == R) /\ 03 ==L /\ dl

I ->01 | ... | oN => !dl I2: ol == R /\ 02 == R

D -> dl | !dl C3: (03 ==L /\ ol == R) /\ 03 == R /\ dl
=> Idl I3: !dl

(a) The DSLs O (rooted at 0)

and U (rooted at U) (b) Synthesized O-consequences (c) Synthesized U-implicants

Fig. 9. The DSLs and synthesized properties for the philo benchmark.

7.3 Application 2: Reasoning about Concurrent Programs

We show how ASPIRE can be used to reason about bugs in concurrent programs by considering
8 variants of 3 concurrency problems by Arpaci-Dusseau and Arpaci-Dusseau [1] (2 problems
related to deadlocks, and 1 to race conditions), and one benchmark obdet that requires synthesizing
hyperproperties. Similar to how we model nondeterminism, we introduce an array h to represent
the order in which threads are scheduled.

In the philo benchmark, we show how AsPIRE can synthesize conditions under which deadlock
can be reached or avoided for the dining-philosophers problem, where N processes arranged in a
circle contend N resources that are shared by neighboring processes. A deadlock happens when no
process can access both of their Left and Right resources indefinitely. ASPIRE models this problem
with a query 3h. dI = schedule(oy,- - - , 0N, h), where 0; € {L,R} indicates which resource the
process i always takes first; d/ denotes that a deadlock has happened.

For the case involving three processes/philosophers (N = 3), when given a DSL O in Figure 9a that
contained predicates of the form o; = {L|R}, ASPIRE synthesizes the O-consequences in Figure 9b,
which state that deadlock can be prevented by having two of the processes disagree on their fork
choice. For the same N, and a dual DSL U in Figure 9a, ASPIRE synthesizes the U-implicants in
Figure 9c, which exactly characterize the two cases that lead to a deadlock (first two properties) and
also capture that there always exists an execution that does not lead to a deadlock (last property).

Whereas similar tools for concurrent programs only deal with properties over a single sched-
ule [28, 47], the next benchmark obdet demonstrates how ASPIRE can also synthesize properties
that involve multiple schedules (i.e., hyperproperties). The obdet benchmark models two threads
p_o := p_i + s | p_o := p_i - s where s is a secret variable and p_o and p_i are public
variables. We say that the system is observational deterministic [48] if the observations made by
a public observer (i.e., one that can only observe p_o and p_i) are deterministic, regardless of
scheduling orders and secret input data (i.e., the values of the variables s). The query in the obdet
benchmark is “3hy, hy. po1 = schedule(pi1, s1,h1) A po2 = schedule(pis, s2, hy)” where hy and h;
describe 2 different schedules. Given a DSL £ containing only public variables, ASPIRE synthesizes
the L-consequence p;; = pi2 = Po1 = Po2, ensuring the system is observationally deterministic.

Each of the 4 rsrc benchmarks describes a simple resource allocator; ASPIRE synthesizes proper-
ties describing the minimum number of resources that must (or may) cause a deadlock. Each of the
3 race benchmarks describes two threads; ASPIRE can discover the necessary (or sufficient) ways
to place a critical section to prevent race conditions. Details are shown in Appendix D.4.

7.4 Application 3: Solving Two-Player Games

In this section, we show how ASPIRE can be used to synthesize generalized strategies for solving
two-player games. In particular, by carefully designing the DSL, ASPIRE can synthesize sets of
winning strategies expressed in a symbolic form, rather than a single concrete strategy.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL1, Article 114. Publication date: April 2025.



LouD: Synthesizing Strongest and Weakest Specifications 114:23

We illustrate the idea using an example by Bloem et al. [5], called rg (for request/grant). The
two players take on the roles of client and server, and in each round, the server decides whether to
grant (g) or not (§) the request for that round, and then the client decides whether to send (r) or not
(7) a request in that round. To win the game, the server must grant every request in the same or
next round. Bloem et al. [5] show the server player can be in 3 possible states: (i) go: no ungranted
request (ii) q;: an ungranted request in the last round (iii) ¢,: ungranted requests 2 or more rounds
ago. The server should prevent entering state g.

One of the winning strategies from the server side is to always grant on both state g and g;.
We denote such a strategy as a[qo] = g A a[¢q1] = g—i.e., a[q] = a denotes that strategy « chooses
action a when in state q. We can find winning strategies by modeling the rg game as a query
“3p. w = play(q, )", where the client’s strategy f is existentially quantified and play(«, f) is the
game controller that takes the strategy of both players and produces a Boolean value w denoting
whether the server wins after playing the game. Note that the way we model 2-player games can
also be extended to multi-player games by introducing a set of opponent strategies {f1,- - - , S}

The generality of the LouD framework allows ASPIRE to solve two-player games using the
following queries: (i) Must-win strategy: what strategy « can guarantee a win for any strategy
(Equation (10))?

Yo, w. (3. w = play(at, f)) = (Ppust (@) = w=T) (10)
and (ii) May-win strategy: what strategy a can win for at least one strategy f (Equation (11))?
Vo, w. (Pmay(a) Aw=T) = (3. w = play(a, f)) (11)

Looking at Equation (10), if we provide a DSL O that expresses formulas in the form “P,,s; (a) =
w = T”, we can extract the must-win strategy in the P,,s; part of the synthesized formulas. By
replacing T with F we can get the must-lose strategy. For the rg game, AsPIRE synthesized the
following O-consequences, which tells us that the server will always win if they grant requests in
either of states g and q;—i.e., ASPIRE finds “a set of” winning strategies.

algpl=g=w=T algpl=g=>w=T (12)
When provided with the dual DSL U AsPIRE also synthesized the following U -implicants:
algl =gnalgl=gArw=F w=T (13)

The first U-implicant states that the server may lose if they do not grant requests at both states g
and g;, whereas the second U-implicant states that whatever strategy the server uses there exists
a strategy of the requester (i.e., the one that never issues requests) that causes the server to win.

Other benchmarks. We consider a total of 5 benchmarks: rg (discussed above), nim2 (the Nim
game), and temp (a temperature controller), which are adapted from linear reachability games by
Farzan and Kincaid [18]°, and num1 and num2, which are games designed by us in which two players
manipulate an integer where one player’s goal is to keep the integer in a certain range. Because of
the implementation bounds discussed in section 6, we stipulate that player 1 (typically the player
that needs to stay in safe states) wins, after a finite number (we set as 15) of rounds of play.

It takes AsPIRE less than 85 seconds to synthesize must/may strategies for each benchmark.
Compared to the work by Farzan and Kincaid [18], ASPIRE synthesizes (i) not only must- but also
may-strategies, (ii) properties on desired strategies instead of a concrete strategy, and (iii) general
strategies that work for games with parameters (e.g. the initial number of pebbles in nim2).

Details of DSL design and synthesized properties of benchmarks are provided in Appendix D.5.

3All other games studied by Farzan and Kincaid cannot be modeled in AsPIRE due to the restricted features of SKETCH
languages, such as limited support to floating point numbers.
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8 Related Work

Abstract Interpretation. Many static program-analysis and verification techniques represent large
program state spaces symbolically as predicates, using abstract interpretation [9]. While the majority
of works on abstract interpretation has been focused on over-approximation, it can also be used
to describe under-approximations of the program behavior [6, 21, 41]. In particular, the best £-
conjunction synthesis problem is an instance of strongest-consequence problem [39]. Given a formula
¢ in logic £, (with interpretation [-];), the goal of strongest-consequence problem is to determine
the strongest formula i that is expressible in a different logic £, (with interpretation [-],) such that
[¢]1 € [¢]2- One existing technique to solve this problem identifies a chain of weaker implicants
until one becomes a consequence of ¢ [38], whereas other techniques take the opposite direction,
identifying a chain of stronger consequences [45, 46]. Unlike these approaches, our framework
LouD (like sPYRO [34]) supports a customizable DSL, avoiding requirements to perform operations
on elements within the DSL £, such as join [46]. The ability to modify the DSL is what makes the
LouD framework applicable to many domains.

Best L-term Synthesis. The idea of synthesizing a “best” term from a customizable DSL £ was first
proposed by Kalita et al. [25], where the goal was to synthesize a most-precise abstract transformer
for a given abstract domain. Park et al. [34] generalized the idea and introduced the setting to
define and solve the problem of synthesizing best £-conjunctions. In these work, the “best” term
should be (i) sound: it is a valid approximation to the best transformer in Kalita et al. [25] or the
semantics of query in Park et al. [34], and (ii) precise: it is minimal w.r.t. a preorder defined on L.

The Loup framework takes a step further: it further generalizes the queries to allow exis-
tential quantifiers and introduces the problem of synthesizing weakest L-implicants and best
L-disjunctions. Logically, the Loup framework subsumes both spyro and the work by Kalita et al..

At the algorithmic level, the tools solving the above problems all use two kinds of examples for
synthesis, where one is treated as hard constraints to guarantee soundness and the other one is
treated as soft constraints to guarantee precision. spPYrRo improved the algorithm by Kalita et al. by
introducing the idea of freezing examples, thus avoiding the need for a synthesizer with hard and
soft constraints. The CEGQI algorithm we present Section 5 is a new approach that is not present
in the aforementioned works as none of them supports existential quantifiers in their queries.

Program Logic. Hoare [23] and incorrectness logic [10, 31] can reason about program properties
through preconditions and postconditions. If one treats the DSL £ as an assertion language, the
problems of computing strongest postcondition [12] and weakest liberal precondition [11] in Hoare
logic, and weakest under-approximation postcondition and weakest possible precondition [24] in
incorrectness logic, can be expressed within the Loup framework (see Appendix A).

One key distinction between our approach and the one used in automating computing the above
operations in program logics is that in the Loup framework, one can specify what DSL L they
want their properties to be expressed in. In contrast, the properties produced automatically for,
e.g., weakest possible preconditions in incorrectness logic, are the results of syntactic rewrites that
often result in complex properties with potentially many quantifiers.

Invariant inference. Many data-driven, CEGIS-style algorithms can infer program invariants—e.g.,
Elrond [49], abductive inference [14], ICE-learning [19], LoopInvGen [32], Hanoi [30], and Data-
Driven CHC Solving [50]. Dynamic techniques like Daikon [16, 17], QuickSpec [42] and Precis [2]
can also synthesize invariants through program traces or random tests. The Loup framework differs
from the above works in three key ways: (i) The language L is customizable and is not limited to a
set of predefined predicates, and thus the Loup framework can be used in a domain-agnostic way
(as showcased by the many applications presented in Section 7); (ii) the LouD framework supports
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both over-approximated and under-approximated reasoning, and (iii) the properties synthesized by
LOUD are provably sound strongest L-consequences and sound weakest L-implicants.

Quantifier Elimination. Many algorithms [7, 13, 15, 27] are built on abductive inference, specifi-
cally, approximate quantifier elimination. Gulwani and Musuvathi [22] defined overapproximate
existential quantifier elimination as a “cover operation”, where the goal is, given a formula 3V.¢, to
find a quantifier-free formula ¢ such that (3V.¢) = ¢. If ¢ is restricted to be in a DSL L, the cover
problem corresponds to synthesizing L-consequences for queries with an existential quantifier
in LouD framework. Some algorithms [13, 27] also define underapproximate existential quantifier
elimination, which corresponds to synthesis of £-implicants. Other approaches are limited to
specific theories or require nontrivial, theory-specific primitives [4, 18]. LouD framework differs
from above works because it allows custom DSLs that express the target quantifier-free formulas
and thus is not restricted to any fixed theory.

Logic-Based Learning. The angelic and demonic behaviors of nondeterminism correspond to the
concepts of brave entailment (i.e., entailment from some answer set) and cautious entailment (i.e.,
entailment from every answer set) in logic-based learning [29]. However, the angelic notion in Loup
does not precisely correspond to cautious entailment. While angelic specifications represent an
under-approximation of possible behavior, cautious entailment does not necessarily imply an under-
approximation. This distinction mirrors the difference between forward reasoning in incorrectness
logic and backward reasoning in Hoare’s possible correctness, as discussed in Appendix A.

Under-approximation. The Loup framework could potentially be combined with existing compo-
sitional under-approximate reasoning techniques, such as incorrectness logic [31] or compositional
symbolic execution [20]. An inherited limitation of syntax-directed under-approximate reasoning
is the inability to effectively reason about statements or procedures involving constraints beyond
the scope of the theory 7~ assumed by the under-approximate reasoning framework. We expect
one could synthesize weakest L-implicants to approximate such constraints into summaries that
are expressible in the theory 7~ assumed by under-approximation frameworks.

9 Conclusion

This paper presented LoUD, a general framework for synthesizing over- and under-approximated
specifications of both deterministic and nondeterministic programs, thus enabling broad
applications—e.g., describing sources of bugs in concurrent code and finding winning strategies in
two-player games. The paper also presents general procedures for solving LouD problems using
simple synthesis primitives that do not involve complex quantifier alternations.

Currently, our tool ASPIRE is implemented on top of the skETcH synthesizer, which results in
some limitations. First, synthesized formulas are only sound for inputs up to a given bound. Such an
issue could be addressed by combining our approach with an off-the-shelf verifier; however, we are
not aware of verifiers that can reason about .£-implicants—i.e., under-approximated specifications.
Our work provides a motivation for building such verifiers. Second, SKETCH limits us from exploring
applications that involve inputs of unbounded length—e.g., reasoning about infinite traces, LTL
formulas, and reactive systems. Our work thus opens an opportunity for the research community:
by improving efficiency and providing stronger soundness guarantees for the primitives used to
solve LouD problems, researchers can tackle the many applications supported by the framework.
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Data-Availability Statement

Our implementation of ASPIRE that instantiates the LouD framework is built on top of the skETcH
synthesizer. We provide a comprehensive Docker image on Zenodo that contains the source code and
binary of ASPIRE, all the necessary dependencies, and scripts and datasets used in the experiments
described in Section 7 [33].
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